Correction for Fernández de Castro et al., Reovirus Forms Neo-Organelles for Progeny Particle Assembly within Reorganized Cell Membranes
نویسندگان
چکیده
UNLABELLED Most viruses that replicate in the cytoplasm of host cells form neo-organelles that serve as sites of viral genome replication and particle assembly. These highly specialized structures concentrate viral replication proteins and nucleic acids, prevent the activation of cell-intrinsic defenses, and coordinate the release of progeny particles. Despite the importance of inclusion complexes in viral replication, there are key gaps in the knowledge of how these organelles form and mediate their functions. Reoviruses are nonenveloped, double-stranded RNA (dsRNA) viruses that serve as tractable experimental models for studies of dsRNA virus replication and pathogenesis. Following reovirus entry into cells, replication occurs in large cytoplasmic structures termed inclusions that fill with progeny virions. Reovirus inclusions are nucleated by viral nonstructural proteins, which in turn recruit viral structural proteins for genome replication and particle assembly. Components of reovirus inclusions are poorly understood, but these structures are generally thought to be devoid of membranes. We used transmission electron microscopy and three-dimensional image reconstructions to visualize reovirus inclusions in infected cells. These studies revealed that reovirus inclusions form within a membranous network. Viral inclusions contain filled and empty viral particles and microtubules and appose mitochondria and rough endoplasmic reticulum (RER). Immunofluorescence confocal microscopy analysis demonstrated that markers of the ER and ER-Golgi intermediate compartment (ERGIC) codistribute with inclusions during infection, as does dsRNA. dsRNA colocalizes with the viral protein σNS and an ERGIC marker inside inclusions. These findings suggest that cell membranes within reovirus inclusions form a scaffold to coordinate viral replication and assembly. IMPORTANCE Viruses alter the architecture of host cells to form an intracellular environment conducive to viral replication. This step in viral infection requires the concerted action of viral and host components and is potentially vulnerable to pharmacological intervention. Reoviruses form large cytoplasmic replication sites called inclusions, which have been described as membrane-free structures. Despite the importance of inclusions in the reovirus replication cycle, little is known about their formation and composition. We used light and electron microscopy to demonstrate that reovirus inclusions are membrane-containing structures and that the endoplasmic reticulum (ER) and the ER-Golgi intermediate compartment interact closely with these viral organelles. These findings enhance our understanding of the cellular machinery usurped by viruses to form inclusion organelles and complete an infectious cycle. This information, in turn, may foster the development of antiviral drugs that impede this essential viral replication step.
منابع مشابه
The Penetration of Reovirus Rna and Initiation of Its Genetic Function in L-strain Fibroblasts
Reovirus type 3 is phagocytized by L cells and rapidly sequestered inside lysosomes. Hydrolases within these organelles are capable of stripping the viral coat proteins, but they fail to degrade the double-stranded RNA genome. These observations support the view that sojourn of reovirus in lysosomes, when the lytic enzymes uncoat its genome, is an obligatory step in the sequence of infection. A...
متن کاملIn vitro recoating of reovirus cores with baculovirus-expressed outer-capsid proteins mu1 and sigma3.
Reovirus outer-capsid proteins mu1, sigma3, and sigma1 are thought to be assembled onto nascent core-like particles within infected cells, leading to the production of progeny virions. Consistent with this model, we report the in vitro assembly of baculovirus-expressed mu1 and sigma3 onto purified cores that lack mu1, sigma3, and sigma1. The resulting particles (recoated cores, or r-cores) clos...
متن کاملINTRODUCTION Spectrin is a cytoskeletal protein essential for the determination of cell shape, the resilience of membranes to mechanical stress, the positioning of particular transmembrane proteins within the plane of a membrane, and the organization of organelles
Spectrin is a cytoskeletal protein essential for the determination of cell shape, the resilience of membranes to mechanical stress, the positioning of particular transmembrane proteins within the plane of a membrane, and the organization of organelles and molecular traffic (reviewed in e.g. Bennett and Gilligan, 1993; De Matteis and Morrow, 1998; Holleran and Holzbaur, 1998). These functions re...
متن کاملJcb_201401016 1..16
Spectrin and ankyrin are associated with the cytoplasmic surface of the plasma membrane where they cooperate in micrometer-scale organization of membrane-spanning proteins within specialized membrane domains in many vertebrate tissues (Bennett and Healy, 2009; Bennett and Lorenzo, 2013). A common organizational principle shared by spectrin/ankykrin-based domains, as presented in reviews and car...
متن کاملA proapoptotic peptide derived from reovirus outer capsid protein {micro}1 has membrane-destabilizing activity.
The reovirus outer capsid protein μ1 is responsible for cell membrane penetration during virus entry and contains determinants necessary for virus-induced apoptosis. Residues 582 to 611 of μ1 are necessary and sufficient for reovirus-induced apoptosis, and residues 594 and 595 independently regulate the efficiency of viral entry and reovirus-induced cell apoptosis, respectively. Two of three α-...
متن کامل